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Received 5 May 1999

Abstract. We study the effect of a magnetic field on the dimensional crossover of weakly coupled two-leg
Hubbard ladders under pressure. Our model is based on the perturbative renormalization approach (PRG)
with two cut-off parameters, the bandwidth E0 and a characteristic magnetic energy ωc. We determine
the temperature-pressure phase diagram for different values of the magnetic field and discuss the relative
stability of the d-wave superconducting phase (SCd) and the two dimensional Fermi liquid phase (2D)
which appear at zero field. We show that the field induces a reduction in the effective dimensionality of the
system and confines the electron motion within the ladder. In fact, we find that with increasing magnetic
field, the isolated ladder phase gets wider at the expense of the SCd phase which disappears at a critical
magnetic field Hc. The superconducting transition temperature Tc is found to decrease as the field increases
up to Hc for which Tc falls to zero. Concerning the 2D phase, we show that it is destroyed for ωc greater
than the crossover temperature at which the system crosses to 2D phase at zero magnetic field.

PACS. 64.60.-i General studies of phase transitions – 64.60.Ak Renormalization-group, fractal, and per-
colation studies of phase transitions – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

The ladder compounds which may be regarded as a
crossover between one dimensional and two dimensional
systems, provide a good theoretical and experimental
probe to understand the properties of high Tc super-
conductors (HTS) especially the breakdown of the Fermi
liquid theory in the normal state [1]. Therefore recent in-
terest has been focused on these compounds which belong
to spin liquid state and exhibit numerous similarities with
HTS namely a spin gap and a transition from insulator to
metal upon doping [2].

Despite numerous studies of ladder systems, it still re-
mains to understand how these non-Fermi liquid quasi-one
dimensional systems evolve into isotropic two dimensional
behavior under coupling between ladders.

The one dimensional behavior is known to be rein-
forced by the orbital effect of a magnetic field as has been
shown in organic conductors. The most spectacular and
convincing evidence of this phenomenon is the field in-
duced SDW in the Bechgaard salts as first discussed by
Gor’kov et al. [3] and Héritier et al. [4].

In this paper we undertake an attempt to study the
crossover from isolated ladders to two dimensional cou-
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Québec, J1K 2R1, Canada

b associé au CNRS

pled ladder system under an applied magnetic field. We
will discuss the orbital effect of the magnetic field on the
phase diagram of two-leg Hubbard ladders weakly cou-
pled by interladder hopping process. Our study is based
on perturbative renormalization group theory (PRG) with
two cut-off parameters which are the bandwidth E0 and
a characteristic magnetic energy ωc.

The outline of this paper is as follows. In Section 2 we
give a description of our model. In Section 3 we derive the
renormalization group equations for the interladder pro-
cesses. In Section 4 we present and discuss the numerical
results. Section 5 is devoted to the conclusion.

2 The model

The isolated two-leg Hubbard ladder is described by the
following dispersion relations linearized around the Fermi
points [5,6]

εmk = ±vmF (k ∓ kmF ) ,m = A, B (1)

where A (B) refers to the Antibonding (Bonding) band
and kmF and vmF are respectively the Fermi point and the
Fermi velocity in the band m. εmk run over a range char-
acterized by the bandwidth cutoff E0. We assume that
vmF = vF to avoid additional renormalization of the Fermi
velocity [7].
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The electrons interact through intraladder scattering
processes characterized by the dimensionless constants
g

(i)
µ , µ = 0, f, t and i = 0, 1 within the g-ology model [6,8]

where 0, f , t denote respectively intraband scattering,
interband forward scattering and interband tunneling
scattering and g

(1)
µ (g(2)

µ ) refers to backward (forward)
scattering (Fig. 3 of Ref. [6]).

Recent weak coupling RG study of isolated two-leg
Hubbard ladder [5,6,9] revealed the existence of a strong
coupling fixed point characterized by the opening of a spin
gap. Such phase denoted by SGM (spin gap metal) in ref-
erence [6] is dominated by d-wave superconducting corre-
lations.

The isolated ladders are weakly coupled by one and
two particle hopping processes. The one particle hopping
( two particle hopping) takes place when a single particle
(a pair of particle) hops from one ladder to a neighboring
one as it is illustrated in Figure 2 of reference [6].

The methodology used in this paper relies on the
perturbative renormalization group approach (PRG), as
discussed by Bourbonnais and Caron [10], which we gen-
eralize to the case of two cut-off’s.

The application of PRG to the one dimensional and
quasi-one dimensional electron gas has been extensively
studied and discussed by Sólyom [8]. Following this
work, a number of authors have used the same formalism
with great success to discuss the properties of quasi-one
dimensional conductors. For example the departure from
commensurability of 2kF has been discussed by Seidel
et al. [11] using PRG approach. Montambaux et al. [12]
have discussed the Zeeman effect of a magnetic field with
the same technique, while Japaridze et al. [13] found the
same results by a bosonization method. Prigodin et al.
[14] and Emery et al. [15] have discussed the decoupling
of the zero-sound and Cooper channels caused by three
dimensional coupling by studying the PRG differential
equations. The PRG method has been modified when it
is necessary to take care of a second energy scale involved
in the problem, besides the bandwidth cut-off E0 [12,16].
Here the second energy scale is introduced by the field,
namely the magnetic energy ωc = evHd where d is the
interladder distance and H is the field magnitude. The
numerous examples which can be found in the literature
of well known and well accepted works using this method
seem to validate the use of the PRG approach to the
problem of a two-leg ladder in a magnetic field.

Let us consider the effect of an external magnetic field
H = (0, 0,H) transverse to the plane of the ladders. The
interladder hopping hamiltonian is then given by

H⊥=−t⊥
∑

m=A,B

∑
<l,l′>

∫
dxeie

R
x,l′d
x,ld

A(s).dsψ+
m(x, l)ψm(x, l′)

(2)

where ψm(x, l) (ψ+
m(x, l)) is a particle annihilation (cre-

ation) operator, l is the ladder index, m refers to the band
and x is the coordinate along the ladder direction.

We have chosen the following gauge

A = (0,Hx, 0). (3)

Consequently H⊥ is written as

H⊥ = −t⊥
∑

m=A,B

∑
<l,l′>

∫
dxeiGx(l′−l)ψ+

m(x, l)ψm(x, l′)

(4)

where G = eHd. If we consider a mixed representation by
taking the Fourier transform with respect to x, H⊥ will
be given by

H⊥ = −t⊥
∑

m=A,B

∑
<l,l′>,k‖

ψ+
m(k‖, l)ψm(k‖ +G(l′ − l), l′)

(5)

where k‖ is the longitudinal momentum.
We see that inH⊥, the magnetic vector G = (G, 0, 0) is

coupled to the longitudinal momentum k‖ in the phase of
ψ+
m(k‖, l′) which express the orbital effect of the magnetic

field.
Therefore it is only when a hop from one ladder to a

neighboring one occurs that the translation in the phase
of a particle operator takes place.

Since we are interested in the effect of a magnetic field
on a system of coupled ladders, we will assume that the
intraladder processes are not affected by the presence of
the field. In fact to have an appreciable effect on the intral-
adder hopping processes, the magnetic energy ωc should
be of the same order of such processes. The amplitudes
of the intraladder hopping terms are about 10t⊥ [17]. Us-
ing reasonable parameters for the Fermi velocity and the
intraladder distances [18], we have estimated the magni-
tude of the magnetic field that will be able to overcome
the intraladder hopping processes and we have found that
it should be of the order of 500 T! However we will be
interested in relatively weak magnetic fields which do not
exceed 25 T. Under such magnetic fields the intraladder
processes are really not affected.

3 Renormalization group equations

To derive the scaling equations for intraladder and in-
terladder processes we have adopted the renormalization
group formulation of Bourbonnais and Caron [10] based
on Kadanoff-Wilson model. This approach was applied in
the case of weakly coupled ladder in absence of magnetic
field [6]. The details of calculation exist already in refer-
ences [6,10].

Because we have assumed that intraladder processes
are not affected by the magnetic field, the scaling equa-
tions of the two particle scattering are then unchanged
and are given by equations (3.11-3.16) of reference [6].
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Fig. 1. Diagrammatic representations of the scaling equation
of the one particle hopping process amplitude t⊥ (denoted by
a dark dotted line) (a) and of the second order correction to
the self energy (b). The solid and broken lines represent the
propagators for right-moving and left-moving electrons.

3.1 RG equations for one particle hopping process

The diagrammatic representation of the scaling equation
of t⊥ is shown in Figure 1a. It depends on the intraladder
self energy correction represented in Figure 1b. Assuming
that ωc < E0 ∼ EF (which is reasonable) we find that this
correction diverges as Log[(ω − δωc)/E0] where δ = ±1
and ωc = vFG. If the magnitude of the field tends to
zero, we recover the logarithmic divergence in absence of
a magnetic field that is Log(ω/E0).

This logarithmic term may be written as

Log
(
ω − δωc

E0

)
= Log

(
ωc

E0

)
+ Log

(
ω

ωc
− δ
)
. (6)

We notice that the logarithmic divergence with respect to
ω is left.

Since we are interested in accessible value of the field,
ωc/E0 � 1 and in the behavior of the system for ω → 0,
we are left with a problem with two logarithmic singular-
ities one in Log (ω) (in the case of two particle vertices),
which is well known, and the other in Log (ωc).

We should set up a double renormalization procedure
with two cut-off parameters namely E0 and ωc. Therefore
we choose ωc/E0 and ω/ωc as the two independent scaling
parameters, and this is the only choice.

This two cut-off renormalization group (RG) approach
was applied in the case of the quasi-one dimensional con-
ductors under magnetic field [12]. The two cut-offs were
E0 and the Zeeman energy.

It is worth to note that the logarithmic term in the
two particle vertices is read as

Log
(
ω

E0

)
= Log

(
ωc

E0

)
+ Log

(
ω

ωc

)
· (7)

Therefore the scaling equations of the intraladder coupling
constants g(i)

µ are the same in the the two steps of RG.

We derive the RG equations related to the logarith-
mic problem in ωc/E0 keeping ω/ωc constant while ωc/E0

scales from 1 to its physical value. We can call this
renormalization step the filed renormalization as in ref-
erence [12].

This first step of RG gives rise to effective couplings
which will be the scaling point of the second step of the
renormalization where we vary ω/ωc from 1 to 0 keeping
ωc/E0 constant.

This step may be considered as a frequency renormal-
ization.

The scaling equation of the dimensionless hopping am-
plitude t̃⊥(l) ≡ t⊥(l)/E0 is given by [6,10]

dLogt̃⊥(l)
dl

= 1− dLogz1

dl
(8)

where l is the scaling parameter and is given by l =
Log(E′/E0) for the first step of the RG and by l =
Log(E′/ωc) for the second step (E′ ≡ E(l) is the scaling
energy). The second term in rhs of equation (8) is given by
the correction to the self energy depicted in Figure 2 [10].

The scaling equation of t̃⊥(l) in the first RG step is
then

dLog
∼
t⊥

dl
= 1− (g(1)2

0 + g
(2)2
0 − g(1)

0 g
(2)
0 + g

(1)2
f + g

(2)2
f

− g(1)
f g

(2)
f + g

(1)2
t + g

(2)2
t − g(1)

t g
(2)
t ) (9)

where

l = 0, ..., lmax1 and lmax1 = −Log[max(T, ωc, Tcross)/E0].

lmax1 corresponds to the thermal fluctuations (T ), one par-
ticle dimensionality crossover (Tcross) or magnetic energy
(ωc).

If lmax1 = lc ≡ Log (E0/ωc) then we will carry out
the second step of the RG procedure where the scaling
equation of t̃⊥(l) is reduced to

dLogt̃⊥(l)
dl

= 1 (10)

where

l = 0, ..., lmax2 and lmax2 = Log[max(T, Tcross)/E0].

In fact as we have noted, in the second RG step the
correction given by the self energy is proportional to
Log(ω/ωc − δ) and so is not divergent. Thus the scaling
of t̃⊥(l) is independent of such correction which yields to
equation (10).

It is worth noting that in this step of RG the intralad-
der coupling constants g(i)

µ rapidly reach their fixed values
corresponding to the strong coupling phase (SGM). The
convergence may be obtained for llimit ≈ 3. Therefore if
we choose the magnitude H of the field in such a way that
t̃⊥(lc) < 1 in the first RG and t̃⊥(llimit) < 1, so we could
be able to stop the one hopping process and confine the
electron motion within the ladder. The value ofH yielding
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Fig. 2. Diagrammatic representation of the generators terms
of the superconducting channel (SCd) (a) and the spin density
wave channel (SDW) (b), (dark dotted lines denote t⊥).

to confinement will increase with increasing t̃⊥0 which is
the bare value of t̃⊥(l) in the first RG. Considering t̃⊥0 as
an applied pressure [6], we can conclude that confinement
will requires increasing magnitude of applied field as the
pressure increases.

3.2 RG equations for two particle hopping process

The scaling equations for the interladder two particle hop-
ping amplitude are depicted in reference [6] and we will
study only the most dominant processes namely V SDW

0

and V SCd corresponding to the intraladder spin density
wave (SDW) and the d-wave superconducting channels
(SCd).

For these two processes the scaling equations may be
written as

dV SCd(l)
dl

= fSCd(l) + 2gSCdV SCd(l)− 1
2

(V SCd(l))2

(11)

dV SDW
0 (l)

dl
= fSDW(l) + gSDWV SDW

0 (l)− 1
2

(V SDW
0 (l))2

(12)

where gSCd = 1
2 (g(1)

t + g
(2)
t − g

(1)
0 − g

(2)
0 ) and gSDW = g

(2)
0 .

fSCd and fSDW, which are depicted in Figure 2, are
the generating terms for SCd channel and the SDW chan-
nel respectively. The effect of the magnetic field in equa-
tions (11, 12) appears explicitly only in these generating
terms.

From Figure 2, we see that for the SDW channel
(electron-hole pair) the total energy is conserved after the
second interaction whereas there is an energy gain of 2ωc

for the SCd channel. This gain will be provided by the
thermal fluctuations. Hence for T < ωc the pair will be
broken and the SCd transition never occurs [19].

We should note that the scaling equations are derived
using the usual approximation E(l) � T where E(l) is
the scaling energy. However the temperature dependence
of the SCd generating term, fSCd, should be kept in order
to take into account the thermal condition imposed by the
external legs. fSCd is then given by

fSCd(l) = −C t̃2⊥(l)(gSCd)2 cos (q⊥)
E(l)
ωc

×
[
tanh

(
E(l)
4T
− ωc

2T

)
− tanh

(
E(l)
4T

+
ωc

2T

)]
−C t̃2⊥(l)(gSCd)2 cos (q⊥)

1
1− ωc

E(l)

×
[
tanh

(
E(l)
4T

)
+ tanh

(
E(l)
4T
− ωc

2T

)]
−C t̃2⊥(l)(gSCd)2 cos (q⊥)

1
1 + ωc

E(l)

×
[
tanh

(
E(l)
4T

)
+ tanh

(
E(l)
4T

+
ωc

2T

)]
(13)

whereas the fSDW is written as

fSDW(l) =

− 1
4
t̃2⊥(l)(gSDW)2 cos (q⊥)

 1

1−
(
ωc
E(l)

)2 −
2

1−
(

2ωc
E(l)

)2


(14)

where q⊥ = 0 for the SCd channel and q⊥ = π for the
SDW channel.

The normalization factor C in equation (13) is given
by

C =
(

4 tanh
(
E(l)
4T

)
+
E(l)
ωc

[
tanh

(
E(l)
4T
− ωc

2T

)
− tanh

(
E(l)
4T

+
ωc

2T

)])−1

· (15)

This factor does not emerge during the internal integra-
tion. It is just introduced to recover numerically the zero
field case. Owing to the fact that ωc < E(l) for the first
step of the RG procedure and E(l) � T , this term will
reduce to the analytical normalization factor.
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Fig. 3. Scaling flows of the coupling constants at the first step
of the renormalization procedure (a) and at the second step
(b) for H = 1.6 T (dashed lines) and H = 7.3 T (solid lines).

It is worth noting that V SCd will scale to zero if ωc > T .
Hence, for the SCd channel, the first RG procedure should
be stopped at lmax = −Log[max(T, Tcross)] and the second
step is then useless.

From equation (14), we can note that the first RG
should be carried out for the V SDW

0 up to 2ωc due to the
divergence of fSDW at 2ωc.

Let us denote by fM
1 and fM

2 (M = SDW,SCd) the
generating terms for the first and the second renormaliza-
tion procedures. fSCd

1 will be obtained from equation (13)
by setting E(l) = E0e−l and ωc = E0e−lc if ωc < T and
fSCd

1 will be equal to zero otherwise.

We should note that fSCd
2 becomes meaningless be-

cause we will stop the first RG for V SCd at T > ωc due to
thermal conditions discussed above.

fSDW
i , i = 1, 2 are written as

fSDW
1 (l) =

1
4
t̃2⊥(l)(gSDW)2

[
1

1− e2(l−lc)
− 2

1− 4e2(l−lc)

]
(16)

and

fSDW
2 (l) =

1
4
t̃2⊥(l)(gSDW)2

[
1

1− 1
4e2l

− 2
1− e2l

]
· (17)

The numerical integration of V SCd and V SDW reveals that
V SDW is much smaller than V SCd for the choice of cou-
pling constant given below. Henceforth we will be inter-
ested only in V SCd as the most dominant two particle
process.

We should note that if we develop fSDW (Eq. (14))
with respect to ωc/E(l) we will recover the result of ref-
erence [20] in the case of organic conductors under weak
magnetic field.

4 Results and discussion

We have carried out the numerical integration of equa-
tions (9, 13) and equations ((3.11)-(3.16)) of reference [6]
for the first step of the RG. We have used the the following
bare values

g(i)
µ (0) = 0.3, V SCd(0) = 0, t̃⊥(0) = t̃⊥0 (18)

t̃⊥0 is regarded as an applied pressure [6].
In order to estimate the magnitude of the magnetic

field, we have taken vF = 106ms−1 and d = 3 Å for the
Fermi velocity and the interladder distance respectively.
These values are reasonable for the superconducting lad-
der materials such as Sr14−x CaxCu24O41 [17].

In Figure 3 we have depicted the scaling flows of g(i)
µ

within the first renormalization step (a) and the second
one(b) for H = 1.6 T and H = 7.3 T.

Carrying out the first renormalization step procedure
we may meet three situations:

(a) at E(l) > T , t̃⊥(l) reaches unity before V SCd di-
verges, then we should stop the renormalization proce-
dure because the system will crosses over to the two di-
mensional (2D) Fermi liquid phase. It is the case where
ωc < T < Tcross, Tcross being the one particle two dimen-
sional crossover temperature (denoted by Tx1 in Ref. [10]).

(b) at E(l) > T , V SCd diverges before t̃⊥(l) reaches
unity. In this case the system undergoes a phase transition
to the SCd phase and we will stop the renormalization
procedure too. This case is met when Tc > T > ωc, Tc

is the two particle dimensionality crossover temperature
(denoted by Tx2 in Ref. [10]).

(c) at E(lmax) ≈ T , t̃⊥(l) is smaller than unity and
V SCd is not divergent. In this case the one and two particle
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processes are stopped and the system is left in the isolated
ladder phase (SGM).

It should be noted that for the SDW channel, if at
lmax ≈ −Log (2ωc/E0) t̃⊥(l) is smaller than unity and
V SDW is not divergent then we have to carry out the sec-
ond step of renormalization which starts with the renor-
malized value of g(i)

µ (l), t̃⊥(l) and V SDW(l) at l = lmax,
namely[

g(i)
µ (0)

]
2

=
[
g(i)
µ (lmax)

]
2
,
[
t̃⊥(0)

]
2

=
[
t̃⊥(lmax)

]
1
,[

V SDW(0)
]
2

=
[
V SDW(lmax)

]
1

(19)

where the labels 1 and 2 denote respectively first and
second renormalization step procedure.

In order to get the phase diagram (T -t̃⊥0) (which may
be regarded as temperature-pressure diagram) we have to
solve the scaling equations for different values of t̃⊥0 and
for a fixed value H of the magnetic field.

Figure 4a-e show phase diagrams obtained for H =
0 T(a), 1.6 T(b), 2.7 T(c), 3.7 T(d) and 12 T(e). T̃c and
T̃cross (denoted by T ′c and T ′cross in the figures) are given
as in reference [6] by

T̃cross =
Tcross

E0
= e−lcross , T̃c =

Tc

E0
= e−lSCd (20)

where t̃⊥(lcross) = 1 and V SCd(lSCd) = −∞.
As we can note, as the field increases the SGM phase is

established at the expense of the SCd phase which shrinks
and its starting point gets shifted to higher pressure. For
a critical value of the magnetic field HSCd the SCd phase
is completely destroyed.

Concerning the 2D phase, we see that for H < HSCd

(corresponding to ωc < Tcross), this phase is unaffected.
However for H > HSCd and for increasing magnetic field
the 2D phase gets smaller and is replaced by the SGM
phase.

It is interesting to study the evolution of the supercon-
ducting temperature Tc with the magnetic field. Figure 5
shows the dependence of Tc on the the magnitude H of
the field for different values of t̃⊥0 (pressure). We note
that Tc(H) decreases with H and falls to zero at a critical
value Hc which increases with pressure as it is shown in
Figure 6.

The decrease of Tc with increasing H reflects the con-
finement of particle motion within the ladders. The fall
of Tc(H) to zero may be explained as follows. We have
seen in Section 3.1 that for the SCd channel the pair is
broken at T < ωc. Therefore if the SCd transition occurs,
V SCd should diverge at T > ωc. With increasing H, the
RG procedure should be stopped at earlier stage. For a
critical value Hc of the field V SCd does not diverge at
l < lmax = Log

(
E0
T

)
where T > ωc = evFdHc and then

the SCd transition does not occur. Thus Tc(H) falls to
zero.

The growth of Hc with t̃⊥0 (Fig. 6) expresses the com-
petition between the magnetic field and pressure. The uni-
dimensionalization of particle motion requires increasing
magnetic field as pressure increases.

In Figure 7 we have represented Tc with respect to t̃⊥0

(pressure) for different values of H. We note that for a
given value of the field, Tc increases with pressure as it is
expected. This behavior is met in the case of zero magnetic
field [2].

To summarize these results we have depicted the
(T, t̃⊥0,H) phase diagram in Figure 8.

We can conclude that the magnetic field reduces the
interladder one and two particle hopping processes. The
particle motion is then unidimensionalized within the lad-
der which explain the appearance of the SGM phase at
low temperature. Therefore as the field increases the cou-
pling between ladders is decreased and the system, which
may be in the SCd phase or the 2D phase at zero magnetic
field, will scale to the isolated ladder phase (SGM phase).
The effective dimensionality of the system is then reduced
by applying a magnetic field.

It is worth noting that for the range of t̃⊥0 where the
2D phase appear, a field, for which ωc> T̃cross, will be able
to stop the crossover to the 2D phase. For the values of
t̃⊥0 depicted in the phase diagrams, we have found that a
field of about 20 T will destroy completely the 2D phase
and the SCd phase found at zero magnetic field and the
corresponding phase diagram is reduced to the SGM phase
for any value of t̃⊥0. Such field is accessible, which give us
an opportunity to have an experimental test to our model.

We should remark that it will be interesting to study
the T < Tcross range by taking into account the two dimen-
sional effects in the RG equations [21]. The bare coupling
constants will be the renormalized constants at Tcross. In
this two dimensional phase the nesting properties of the
Fermi surface should be taken into account when calculat-
ing the electron-electron and electron-hole bubbles for the
RG equations. These nesting properties may reveal some
interesting features such as a competition between the SCd
channel and the SDW channel which may be restored due
to good nesting conditions. Nesting deviations may also
be introduced by including second neighbors ladders hop-
ping processes t⊥2 that may be bypassed by the magnetic
field which is known to restore good nesting conditions.
This procedure was already applied in the case of quasi-
one organic conductors under magnetic field [20] and has
permitted to recover the FISDW phases [3,4]. In our case,
however, specific effects arise because of the two energy
bands present in the ladder compounds. However, since
such study gets over the scope of this paper, these effects
will not be discussed here. A forthcoming paper will be
devoted to them.

5 Conclusion

We have studied the orbital effect of the magnetic filed on
the two-leg Hubbard ladder weakly coupled by one particle
hopping process. We have assumed that the intraladder
processes are not affected by the field.

Using a perturbative renormalization group approach
(PRG) with two cut-off parameters, the bandwidth E0

and the magnetic energy ωc, we have studied the relative
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Fig. 4. Phase diagram of weakly coupled Hubbard ladder under a magnetic field H = 0 T (a), 1.6 T (b), 2.7 T (c), 3.7 T (d)
and 12 T (e).
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stability of the d-wave superconducting phase (SCd) and
the two dimensional (2D) Fermi liquid phase.

We have shown that the SCd phase shrinks with in-
creasing magnetic filed and gets shifted to higher pressure.
The critical temperature Tc(H), at which the SCd transi-
tion occurs, decreases with increasing field up to a critical
value Hc where it falls to zero and so the SCd transition
will not occur. We have found that for a given magnetic
field Tc increases with pressure as it is the case of zero
magnetic filed.

Concerning the 2D phase, we have shown that for a
field such as ωc > Tcross, (where Tcross is the crossover
temperature), we are able to stop the crossover and leave
the system in the isolated ladder phase (SGM). We think
that a reasonable value of the field of about 20 T will be
sufficient to stop the one and two particle hopping pro-
cesses and drive the system to the isolated ladder phase.
In this case the electron motion will be confined within
the ladder.

S. Haddad is grateful to C. Bourbonnais, S. Kaddour and K.
Frikach for stimulating discussions and would like to thank le
Centre de Recherche en Physique du Solide à l’université de
Sherbrooke for hospitality and financial support.
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